Delete 'ProtoIOsArduinoTester.ino'
This commit is contained in:
@@ -1,305 +0,0 @@
|
|||||||
/*
|
|
||||||
PROTO I/Os arduino PCB TESTER.
|
|
||||||
This code tests all the devices in the PROTO I/Os arduino V1.0 PCB shield.
|
|
||||||
|
|
||||||
Four buttons, buttons 3 and 4 have melodys.
|
|
||||||
Buttons 1 and 2 switch between a light
|
|
||||||
sequence on the board LEDs, or outputs the temperature read
|
|
||||||
by (DS18S20, DS18B20, DS1822) has a binary value on to the LEDs.
|
|
||||||
|
|
||||||
|
|
||||||
By Jony Silva, www.electropepper.org , 20/4/2014 V1.0
|
|
||||||
*/
|
|
||||||
#include "pitches.h"
|
|
||||||
#include <OneWire.h>
|
|
||||||
|
|
||||||
#define ON 1
|
|
||||||
#define OFF 0
|
|
||||||
#define BUTTON_1 8
|
|
||||||
#define BUTTON_2 9
|
|
||||||
#define BUTTON_3 10
|
|
||||||
#define BUTTON_4 11
|
|
||||||
#define BUZZ 13 // Buzzer is connected to digital output 13.
|
|
||||||
OneWire ds(12); // The DS18S20 is on digital output 12
|
|
||||||
|
|
||||||
|
|
||||||
// Global variables -----------------------------------------------------------------------
|
|
||||||
|
|
||||||
// Initialize an array with all 8 leds and give them the corresponding
|
|
||||||
// digital number.
|
|
||||||
const char led[8] = {0,1,2,3,4,5,6,7};
|
|
||||||
char state = ON; // This tells us if the light is ON or OFF
|
|
||||||
char next = -1; // This indicates which LED we are on, in this case all off
|
|
||||||
char dir = 'R'; // The direction where the light is going next, R for right, L for left
|
|
||||||
char mode = 'C'; // The mode for the LEDs, C for chaser, T for temperature
|
|
||||||
//------------------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function declarations -----------------------------------------------------------------
|
|
||||||
void blinker (void); // Rotates the LEDs
|
|
||||||
void buttons (void); // Reads the buttons
|
|
||||||
void melody_1 (void); // Calls for melody one
|
|
||||||
void melody_2 (void); // Calls for melody two
|
|
||||||
void temperature_read (void); // Reads temperature and displays in binary to the LEDs
|
|
||||||
//-----------------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Melodys --------------------------------------------------------------------------------
|
|
||||||
//---------------- MELODY ONE ------------------------------------------------
|
|
||||||
// Notes in the melody:
|
|
||||||
int melody1[] = {NOTE_C4, NOTE_G3,NOTE_G3, NOTE_A3, NOTE_G3,0, NOTE_B3, NOTE_C4};
|
|
||||||
// Note durations: 4 = quarter note, 8 = eighth note, etc.:
|
|
||||||
int noteDurations1[] = {4,8,8,4,4,4,4,4};
|
|
||||||
|
|
||||||
|
|
||||||
//---------------- MELODY TWO ------------------------------------------------
|
|
||||||
// Notes in the melody:
|
|
||||||
int melody2[] = {NOTE_C4, NOTE_C4, NOTE_D4, NOTE_C4, NOTE_F4, NOTE_E4,
|
|
||||||
NOTE_C4, NOTE_C4, NOTE_D4, NOTE_C4, NOTE_G4, NOTE_F4,
|
|
||||||
NOTE_C4, NOTE_C4, NOTE_C5, NOTE_A4, NOTE_F4, NOTE_E4, NOTE_D4,
|
|
||||||
NOTE_AS4, NOTE_AS4, NOTE_A4, NOTE_F4, NOTE_G4, NOTE_F4};
|
|
||||||
// Note durations: 4 = quarter note, 8 = eighth note, etc.:
|
|
||||||
int noteDurations2[] = {6, 6, 3, 3, 3, 3,
|
|
||||||
6, 6, 3, 3, 3, 3,
|
|
||||||
6, 6, 3, 3, 3, 3, 3,
|
|
||||||
6, 6, 3, 3, 3, 3};
|
|
||||||
//-----------------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Setup the system -------------------------------------------------------------
|
|
||||||
void setup()
|
|
||||||
{
|
|
||||||
|
|
||||||
// Initialize all 8 digital I/O pins as outputs.
|
|
||||||
for (int i = 0; i<8; i++) {
|
|
||||||
pinMode(led[i], OUTPUT);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Initialize all 4 Switches as inputs.
|
|
||||||
for (int i = 8; i<=11; i++) {
|
|
||||||
pinMode(i, INPUT);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Initialize Buzzer as output.
|
|
||||||
pinMode(BUZZ, OUTPUT);
|
|
||||||
|
|
||||||
|
|
||||||
// initialize timer1 ---------------------------------------
|
|
||||||
noInterrupts(); // disable all interrupts
|
|
||||||
TCCR1A = 0;
|
|
||||||
TCCR1B = 0;
|
|
||||||
TCNT1 = 0;
|
|
||||||
|
|
||||||
OCR1A = 9000; // Load value to compare
|
|
||||||
TCCR1B |= (1 << WGM12); // CTC mode
|
|
||||||
TCCR1B |= (1 << CS10); // 64 prescaler
|
|
||||||
TCCR1B |= (1 << CS11); //
|
|
||||||
TIMSK1 |= (1 << OCIE1A); // enable timer compare interrupt
|
|
||||||
interrupts(); // enable all interrupts
|
|
||||||
// ----------------------------------------------------------
|
|
||||||
|
|
||||||
}
|
|
||||||
//---------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
|
|
||||||
// Timer compare interrupt service routine --------------------------
|
|
||||||
ISR(TIMER1_COMPA_vect) // Here we chose between the blinker sequence
|
|
||||||
{ // or to show the temperature on the LEDs
|
|
||||||
if (mode == 'C') {
|
|
||||||
blinker();
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
temperature_read();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// -------------------------------------------------------------------
|
|
||||||
|
|
||||||
|
|
||||||
// Main routine -----------------------------------
|
|
||||||
void loop()
|
|
||||||
{
|
|
||||||
// Turn off all digital I/Os, just to make sure
|
|
||||||
for (int i = 0; i<14; i++) {
|
|
||||||
digitalWrite(i, LOW);
|
|
||||||
}
|
|
||||||
|
|
||||||
while(1)
|
|
||||||
{
|
|
||||||
buttons(); // Forever check which button was pressed
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// -------------------------------------------------
|
|
||||||
|
|
||||||
void buttons (void) {
|
|
||||||
|
|
||||||
// If button 1 was pressed change the register mode to 'C'
|
|
||||||
// this will start the LED light sequence
|
|
||||||
if (!digitalRead(BUTTON_1)) {
|
|
||||||
mode = 'C';
|
|
||||||
}
|
|
||||||
|
|
||||||
// If button 2 was pressed change the register mode to 'T'
|
|
||||||
// this will start temperature reading
|
|
||||||
if (!digitalRead(BUTTON_2)) {
|
|
||||||
mode = 'T';
|
|
||||||
}
|
|
||||||
|
|
||||||
// If button 3 was pressed call the funtion for melody 2
|
|
||||||
if (!digitalRead(BUTTON_3)) {
|
|
||||||
melody_2();
|
|
||||||
while (!digitalRead(BUTTON_3)); // Check if button still pressed do nothing
|
|
||||||
}
|
|
||||||
|
|
||||||
// If button 4 was pressed call the funtion for melody 1
|
|
||||||
if (!digitalRead(BUTTON_4)) {
|
|
||||||
melody_1();
|
|
||||||
}
|
|
||||||
while (!digitalRead(BUTTON_4)); // Check if button still pressed do nothing
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void blinker (void)
|
|
||||||
{
|
|
||||||
if (next == 7 && dir == 'R') { // If next LED is 7 and its rotating right
|
|
||||||
dir = 'L'; // then set direction register (dir) to L left
|
|
||||||
}
|
|
||||||
else if (next == 0 && dir == 'L') { // If next LED is 0 and its rotating left
|
|
||||||
dir = 'R'; // then set direction register (dir) to R right
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
if (state == OFF) { // If light state is OFF
|
|
||||||
state = ON; // change light state to ON
|
|
||||||
}
|
|
||||||
else { // If light state is ON
|
|
||||||
digitalWrite(next, LOW); // turn off next LED
|
|
||||||
state = OFF; // change light state to OFF
|
|
||||||
if (dir == 'R') { // If dir is set to 'R' right
|
|
||||||
next++; // increment next
|
|
||||||
}
|
|
||||||
else { // if dir is set to 'L' left
|
|
||||||
next--; // decrement next
|
|
||||||
}
|
|
||||||
digitalWrite(next, HIGH); // and turn ON next LED
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void melody_1 (void) // The following code and melody was taken
|
|
||||||
{ // from : http://arduino.cc/en/Tutorial/tone
|
|
||||||
// iterate over the notes of the melody:
|
|
||||||
for (int thisNote = 0; thisNote < BUZZ; thisNote++) {
|
|
||||||
|
|
||||||
// to calculate the note duration, take one second
|
|
||||||
// divided by the note type.
|
|
||||||
//e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
|
|
||||||
int noteDuration = 500/noteDurations1[thisNote];
|
|
||||||
tone(BUZZ, melody1[thisNote],noteDuration);
|
|
||||||
|
|
||||||
// to distinguish the notes, set a minimum time between them.
|
|
||||||
// the note's duration + 30% seems to work well:
|
|
||||||
int pauseBetweenNotes = noteDuration * 1.80; // originally 1.30
|
|
||||||
delay(pauseBetweenNotes);
|
|
||||||
// stop the tone playing:
|
|
||||||
noTone(BUZZ);
|
|
||||||
}
|
|
||||||
noTone(BUZZ);
|
|
||||||
}
|
|
||||||
|
|
||||||
void melody_2 (void) // The following code and melody was taken
|
|
||||||
{ // from : http://arduino.cc/en/Tutorial/tone
|
|
||||||
// iterate over the notes of the melody:
|
|
||||||
for (int thisNote = 0; thisNote < BUZZ; thisNote++) {
|
|
||||||
|
|
||||||
// to calculate the note duration, take one second
|
|
||||||
// divided by the note type.
|
|
||||||
//e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
|
|
||||||
int noteDuration = 500/noteDurations2[thisNote];
|
|
||||||
tone(BUZZ, melody2[thisNote],noteDuration);
|
|
||||||
|
|
||||||
// to distinguish the notes, set a minimum time between them.
|
|
||||||
// the note's duration + 30% seems to work well:
|
|
||||||
int pauseBetweenNotes = noteDuration * 1.30; // originally 1.30
|
|
||||||
delay(pauseBetweenNotes);
|
|
||||||
// stop the tone playing:
|
|
||||||
noTone(BUZZ);
|
|
||||||
}
|
|
||||||
noTone(BUZZ);
|
|
||||||
}
|
|
||||||
|
|
||||||
void temperature_read (void)
|
|
||||||
{
|
|
||||||
// This routine was directly take from the OneWire examples
|
|
||||||
// library, please refer to : http://playground.arduino.cc/Learning/OneWire
|
|
||||||
// and : http://www.pjrc.com/teensy/td_libs_OneWire.html
|
|
||||||
|
|
||||||
byte i;
|
|
||||||
byte present = 0;
|
|
||||||
byte type_s;
|
|
||||||
byte data[12];
|
|
||||||
byte addr[8];
|
|
||||||
|
|
||||||
|
|
||||||
if ( !ds.search(addr)) {
|
|
||||||
ds.reset_search();
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (OneWire::crc8(addr, 7) != addr[7]) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// the first ROM byte indicates which chip
|
|
||||||
switch (addr[0]) {
|
|
||||||
case 0x10:
|
|
||||||
type_s = 1;
|
|
||||||
break;
|
|
||||||
case 0x28:
|
|
||||||
type_s = 0;
|
|
||||||
break;
|
|
||||||
case 0x22:
|
|
||||||
type_s = 0;
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
ds.reset();
|
|
||||||
ds.select(addr);
|
|
||||||
ds.write(0x44, 1); // start conversion, with parasite power on at the end
|
|
||||||
|
|
||||||
// we might do a ds.depower() here, but the reset will take care of it.
|
|
||||||
present = ds.reset();
|
|
||||||
ds.select(addr);
|
|
||||||
ds.write(0xBE); // Read Scratchpad
|
|
||||||
|
|
||||||
for ( i = 0; i < 9; i++) { // we need 9 bytes
|
|
||||||
data[i] = ds.read();
|
|
||||||
}
|
|
||||||
|
|
||||||
// Convert the data to actual temperature
|
|
||||||
// because the result is a 16 bit signed integer, it should
|
|
||||||
// be stored to an "int16_t" type, which is always 16 bits
|
|
||||||
// even when compiled on a 32 bit processor.
|
|
||||||
int16_t raw = (data[1] << 8) | data[0];
|
|
||||||
if (type_s) {
|
|
||||||
raw = raw << 3; // 9 bit resolution default
|
|
||||||
if (data[7] == 0x10) {
|
|
||||||
// "count remain" gives full 12 bit resolution
|
|
||||||
raw = (raw & 0xFFF0) + 12 - data[6];
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
byte cfg = (data[4] & 0x60);
|
|
||||||
// at lower res, the low bits are undefined, so let's zero them
|
|
||||||
if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution, 93.75 ms
|
|
||||||
else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
|
|
||||||
else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
|
|
||||||
//// default is 12 bit resolution, 750 ms conversion time
|
|
||||||
}
|
|
||||||
raw = raw / 16;
|
|
||||||
PORTD = raw;
|
|
||||||
}
|
|
||||||
|
|
Reference in New Issue
Block a user