Files
Proto-IOs/ProtoIOsArduino_Test_firmware/ProtoIOsArduinoTester_1/ProtoIOsArduinoTester.ino

306 lines
9.5 KiB
C++

/*
PROTO I/Os arduino PCB TESTER.
This code tests all the devices in the PROTO I/Os arduino V1.0 PCB shield.
Four buttons, buttons 3 and 4 have melodys.
Buttons 1 and 2 switch between a light
sequence on the board LEDs, or outputs the temperature read
by (DS18S20, DS18B20, DS1822) has a binary value on to the LEDs.
By Jony Silva, www.electropepper.org , 20/4/2014 V1.0
*/
#include "pitches.h"
#include <OneWire.h>
#define ON 1
#define OFF 0
#define BUTTON_1 8
#define BUTTON_2 9
#define BUTTON_3 10
#define BUTTON_4 11
#define BUZZ 13 // Buzzer is connected to digital output 13.
OneWire ds(12); // The DS18S20 is on digital output 12
// Global variables -----------------------------------------------------------------------
// Initialize an array with all 8 leds and give them the corresponding
// digital number.
const char led[8] = {0,1,2,3,4,5,6,7};
char state = ON; // This tells us if the light is ON or OFF
char next = -1; // This indicates which LED we are on, in this case all off
char dir = 'R'; // The direction where the light is going next, R for right, L for left
char mode = 'C'; // The mode for the LEDs, C for chaser, T for temperature
//------------------------------------------------------------------------------------------
// Function declarations -----------------------------------------------------------------
void blinker (void); // Rotates the LEDs
void buttons (void); // Reads the buttons
void melody_1 (void); // Calls for melody one
void melody_2 (void); // Calls for melody two
void temperature_read (void); // Reads temperature and displays in binary to the LEDs
//-----------------------------------------------------------------------------------------
// Melodys --------------------------------------------------------------------------------
//---------------- MELODY ONE ------------------------------------------------
// Notes in the melody:
int melody1[] = {NOTE_C4, NOTE_G3,NOTE_G3, NOTE_A3, NOTE_G3,0, NOTE_B3, NOTE_C4};
// Note durations: 4 = quarter note, 8 = eighth note, etc.:
int noteDurations1[] = {4,8,8,4,4,4,4,4};
//---------------- MELODY TWO ------------------------------------------------
// Notes in the melody:
int melody2[] = {NOTE_C4, NOTE_C4, NOTE_D4, NOTE_C4, NOTE_F4, NOTE_E4,
NOTE_C4, NOTE_C4, NOTE_D4, NOTE_C4, NOTE_G4, NOTE_F4,
NOTE_C4, NOTE_C4, NOTE_C5, NOTE_A4, NOTE_F4, NOTE_E4, NOTE_D4,
NOTE_AS4, NOTE_AS4, NOTE_A4, NOTE_F4, NOTE_G4, NOTE_F4};
// Note durations: 4 = quarter note, 8 = eighth note, etc.:
int noteDurations2[] = {6, 6, 3, 3, 3, 3,
6, 6, 3, 3, 3, 3,
6, 6, 3, 3, 3, 3, 3,
6, 6, 3, 3, 3, 3};
//-----------------------------------------------------------------------------------------
// Setup the system -------------------------------------------------------------
void setup()
{
// Initialize all 8 digital I/O pins as outputs.
for (int i = 0; i<8; i++) {
pinMode(led[i], OUTPUT);
}
// Initialize all 4 Switches as inputs.
for (int i = 8; i<=11; i++) {
pinMode(i, INPUT);
}
// Initialize Buzzer as output.
pinMode(BUZZ, OUTPUT);
// initialize timer1 ---------------------------------------
noInterrupts(); // disable all interrupts
TCCR1A = 0;
TCCR1B = 0;
TCNT1 = 0;
OCR1A = 9000; // Load value to compare
TCCR1B |= (1 << WGM12); // CTC mode
TCCR1B |= (1 << CS10); // 64 prescaler
TCCR1B |= (1 << CS11); //
TIMSK1 |= (1 << OCIE1A); // enable timer compare interrupt
interrupts(); // enable all interrupts
// ----------------------------------------------------------
}
//---------------------------------------------------------------------------------
// Timer compare interrupt service routine --------------------------
ISR(TIMER1_COMPA_vect) // Here we chose between the blinker sequence
{ // or to show the temperature on the LEDs
if (mode == 'C') {
blinker();
}
else {
temperature_read();
}
}
// -------------------------------------------------------------------
// Main routine -----------------------------------
void loop()
{
// Turn off all digital I/Os, just to make sure
for (int i = 0; i<14; i++) {
digitalWrite(i, LOW);
}
while(1)
{
buttons(); // Forever check which button was pressed
}
}
// -------------------------------------------------
void buttons (void) {
// If button 1 was pressed change the register mode to 'C'
// this will start the LED light sequence
if (!digitalRead(BUTTON_1)) {
mode = 'C';
}
// If button 2 was pressed change the register mode to 'T'
// this will start temperature reading
if (!digitalRead(BUTTON_2)) {
mode = 'T';
}
// If button 3 was pressed call the funtion for melody 2
if (!digitalRead(BUTTON_3)) {
melody_2();
while (!digitalRead(BUTTON_3)); // Check if button still pressed do nothing
}
// If button 4 was pressed call the funtion for melody 1
if (!digitalRead(BUTTON_4)) {
melody_1();
}
while (!digitalRead(BUTTON_4)); // Check if button still pressed do nothing
}
void blinker (void)
{
if (next == 7 && dir == 'R') { // If next LED is 7 and its rotating right
dir = 'L'; // then set direction register (dir) to L left
}
else if (next == 0 && dir == 'L') { // If next LED is 0 and its rotating left
dir = 'R'; // then set direction register (dir) to R right
}
if (state == OFF) { // If light state is OFF
state = ON; // change light state to ON
}
else { // If light state is ON
digitalWrite(next, LOW); // turn off next LED
state = OFF; // change light state to OFF
if (dir == 'R') { // If dir is set to 'R' right
next++; // increment next
}
else { // if dir is set to 'L' left
next--; // decrement next
}
digitalWrite(next, HIGH); // and turn ON next LED
}
}
void melody_1 (void) // The following code and melody was taken
{ // from : http://arduino.cc/en/Tutorial/tone
// iterate over the notes of the melody:
for (int thisNote = 0; thisNote < BUZZ; thisNote++) {
// to calculate the note duration, take one second
// divided by the note type.
//e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
int noteDuration = 500/noteDurations1[thisNote];
tone(BUZZ, melody1[thisNote],noteDuration);
// to distinguish the notes, set a minimum time between them.
// the note's duration + 30% seems to work well:
int pauseBetweenNotes = noteDuration * 1.80; // originally 1.30
delay(pauseBetweenNotes);
// stop the tone playing:
noTone(BUZZ);
}
noTone(BUZZ);
}
void melody_2 (void) // The following code and melody was taken
{ // from : http://arduino.cc/en/Tutorial/tone
// iterate over the notes of the melody:
for (int thisNote = 0; thisNote < BUZZ; thisNote++) {
// to calculate the note duration, take one second
// divided by the note type.
//e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
int noteDuration = 500/noteDurations2[thisNote];
tone(BUZZ, melody2[thisNote],noteDuration);
// to distinguish the notes, set a minimum time between them.
// the note's duration + 30% seems to work well:
int pauseBetweenNotes = noteDuration * 1.30; // originally 1.30
delay(pauseBetweenNotes);
// stop the tone playing:
noTone(BUZZ);
}
noTone(BUZZ);
}
void temperature_read (void)
{
// This routine was directly take from the OneWire examples
// library, please refer to : http://playground.arduino.cc/Learning/OneWire
// and : http://www.pjrc.com/teensy/td_libs_OneWire.html
byte i;
byte present = 0;
byte type_s;
byte data[12];
byte addr[8];
if ( !ds.search(addr)) {
ds.reset_search();
return;
}
if (OneWire::crc8(addr, 7) != addr[7]) {
return;
}
// the first ROM byte indicates which chip
switch (addr[0]) {
case 0x10:
type_s = 1;
break;
case 0x28:
type_s = 0;
break;
case 0x22:
type_s = 0;
break;
default:
return;
}
ds.reset();
ds.select(addr);
ds.write(0x44, 1); // start conversion, with parasite power on at the end
// we might do a ds.depower() here, but the reset will take care of it.
present = ds.reset();
ds.select(addr);
ds.write(0xBE); // Read Scratchpad
for ( i = 0; i < 9; i++) { // we need 9 bytes
data[i] = ds.read();
}
// Convert the data to actual temperature
// because the result is a 16 bit signed integer, it should
// be stored to an "int16_t" type, which is always 16 bits
// even when compiled on a 32 bit processor.
int16_t raw = (data[1] << 8) | data[0];
if (type_s) {
raw = raw << 3; // 9 bit resolution default
if (data[7] == 0x10) {
// "count remain" gives full 12 bit resolution
raw = (raw & 0xFFF0) + 12 - data[6];
}
} else {
byte cfg = (data[4] & 0x60);
// at lower res, the low bits are undefined, so let's zero them
if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution, 93.75 ms
else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
//// default is 12 bit resolution, 750 ms conversion time
}
raw = raw / 16;
PORTD = raw;
}